A novel reduced power compressive sensing technique for wideband cognitive radio

نویسندگان

  • Yasin Miar
  • Claude D'Amours
  • Tyseer Aboulnasr
چکیده

Wideband spectrum sensing for cognitive radio requires high rate analog to digital (A/D) converters whose power consumption is proportional to the sampling rate. In this article, we propose to use sub-Nyquist non-uniform sampling for spectrum sensing to reduce the power consumption. Since the received signal samples are correlated in the time domain, we estimate the missing samples by using the expectation-maximization (EM) algorithm. It is shown that the combined sub-Nyquist non-uniform sampling and EM algorithm consume much less power than A/D converter at the Nyquist rate making the proposed algorithm a viable low-power solution for spectrum sensing. Moreover, it is shown by simulations that the proposed sub-Nyquist rate non-uniform sampler is accurate enough to detect the edges of the estimated power spectral density.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Wideband Spectrum Sensing Method Based on Sparse Signal Reconstruc- Tion for Cognitive Radio Networks

Wideband spectrum sensing is an essential functionality for cognitive radio networks. It enables cognitive radios to detect spectral holes over a wideband channel and to opportunistically use under-utilized frequency bands without causing harmful interference to primary networks. However, most of the work on wideband spectrum sensing presented in the literature employ the Nyquist sampling which...

متن کامل

Compressive Wideband Power Spectrum Analysis for Eeg Signals Using Fastica And Neural Network

In several applications, such as wideband spectrum sensing for cognitive radio, only the power spectrum (a.k.a. the power spectral density) is of interest and there is no need to recover the original signal itself. In addition, high-rate analog-to-digital converters (ADCs) are too power hungry for direct wideband spectrum sensing. These two facts have motivated us to investigate compressive wid...

متن کامل

Anti-sampling-distortion compressive wideband spectrum sensing for Cognitive Radio

Too high sampling rate is the bottleneck to wideband spectrum sensing for cognitive radio in mobile communication. Compressed sensing (CS) is introduced to transfer the sampling burden. The standard sparse signal recovery of CS does not consider the distortion in the analogue-to-information converter (AIC). To mitigate performance degeneration casued by the mismatch in least square distortionle...

متن کامل

Total Variation Minimization Based Compressive Wideband Spectrum Sensing for Cognitive Radios

Wideband spectrum sensing is a critical component of a functioning cognitive radio system. Its major challenge is the too high sampling rate requirement. Compressive sensing (CS) promises to be able to deal with it. Nearly all the current CS based compressive wideband spectrum sensing methods exploit only the frequency sparsity to perform. Motivated by the achievement of a fast and robust detec...

متن کامل

Compressive Power Spectral Analysis

In several applications, such as wideband spectrum sensing for cognitive radio, only the power spectrum (a.k.a. the power spectral density) is of interest and there is no need to recover the original signal itself. In addition, high-rate analogto-digital converters (ADCs) are too power hungry for direct wideband spectrum sensing. These two facts have motivated us to investigate compressive wide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Wireless Comm. and Networking

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012